
RISC-V Control Transfer Records
(Smctr/Ssctr)

RISC-V Control Transfer Records TG

Version v0.1.4, 2023-09-15: Draft

Table of Contents
Preamble. 1

Copyright and license information. 2

Contributors. 3

1. Introduction. 4

2. CSRs . 5

2.1. Machine Control Transfer Record Control (mctrcontrol) . 5

2.2. Supervisor Control Transfer Record Control (sctrcontrol) . 7

2.3. Virtual Supervisor Control Transfer Record Control (vsctrcontrol). 7

2.4. Machine Control Transfer Record Status (mctrstatus) . 8

2.5. Supervisor Control Transfer Record Status (sctrstatus) . 9

2.6. CSR Listing . 9

3. Entry Registers . 11

3.1. Control Transfer Record Source (ctrsource) . 11

3.2. Control Transfer Record Target (ctrtarget). 12

3.3. Control Transfer Record Metadata (ctrdata) . 12

4. State Enable Access Control . 15

5. Behavior . 16

5.1. Privilege Mode Transitions . 16

5.2. Transfer Type Filtering . 16

5.2.1. External Traps . 17

5.3. Cycle Counting. 18

5.4. RAS Emulation Mode . 19

5.5. Freeze . 19

6. Discovery . 21

robert.chyla
Sticky Note
In TG we were talking about adding a chapter about future extensions (like adding counters etc.). Also during TG discussion we used many drawings, diagrams - none of them end-up in the spec.

Preamble

This document is in the Development state

Assume everything can change. This draft specification will change before being
accepted as standard, so implementations made to this draft specification will
likely not conform to the future standard.

1

http://riscv.org/spec-state

Copyright and license information
This specification is licensed under the Creative Commons Attribution 4.0 International License
(CC-BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright 2022 by RISC-V International.

2

https://creativecommons.org/licenses/by/4.0/
robert.chyla
Comment on Text
rather 2023

Contributors
This RISC-V specification has been contributed to directly or indirectly by:

• Beeman Strong <beeman@rivosinc.com>

• Bruce Ableidinger <bruce.ableidinger@sifive.com>

• Snehasish Kumar <snehasishk@google.com>

• Robert Chyla <robert.chyla@sifive.com>

• John Simpson <john.simpson@sifive.com>

• Ved Shanbhogue <ved@rivosinc.com>

• Stefan O’Rear

3

mailto:beeman@rivosinc.com
mailto:bruce.ableidinger@sifive.com
mailto:snehasishk@google.com
mailto:robert.chyla@sifive.com
mailto:john.simpson@sifive.com
mailto:ved@rivosinc.com

Chapter 1. Introduction
A method to record control transfer history is valuable for performance profiling usages, as well as
for debug. Control transfers include jump instructions, taken branch instructions, traps, and trap
returns. Profiling tools like Linux perf collect control transfer history when sampling, enabling
users, and tools like AutoFDO, to identify hot paths for optimization.

Control flow trace capabilities offer very deep transfer history, but the volume of data produced can
result in significant performance overheads due to memory bandwidth consumption, buffer
management, and decoder overhead. The Control Transfer Records (CTR) extension provides a
method to record a limited history in register-accessible internal chip storage, with the intent of
dramatically reducing the performance overhead and complexity of collecting transfer history.

CTR defines a circular (FIFO) transfer history array. Recorded transfers are inserted to the head of
the array, while older recorded transfers may be overwritten once the array is full. The source PC,
target PC, and some optional metadata is stored for each recorded transfer.

The CTR array is accessible through an indirect CSR interface, such that software can specify which
logical entry in the array it wishes to read or write. Logical entry 0 is always the youngest recorded
transfer, entry 1 is the next youngest, etc.

The machine-level extension Smctr encompasses all added CSRs and all behavior modifications for
a hart, over all privilege levels. The associated supervisor-level extension Ssctr is essentially the
same as Smctr except for excluding the machine-level CSRs and behaviors that should not be
directly visible to supervisor level.

Smctr is dependent on the Smcsrind extension. Ssctr is dependent on the Sscsrind extension.

Text in warning blocks (such as this one) are comments for the reader, included
while the spec is in development. They will be resolved and removed before the spec
is frozen.

4

robert.chyla
Comment on Text
Why 'sampling' - without this part it will be clear.

beeman
beeman
I changed it to "when sampling software execution" to be more explicit. Essentially this is when the tools collect CTR, when collecting other sample state (PC, stack, counter values, etc).

Chapter 2. CSRs
The CTR configuration is selected by the currently active CTR control register, which is mctrcontrol
when V=0 (that is, when in M-mode, S/HS-mode, or U-mode), and vsctrcontrol when V=1 (VS-mode
or VU-mode). In this document, when referring to the currently active CTR control register,
ctrcontrol is used.

CSR field specifications (such as WARL and WPRI) can be found in the RISC-V
Instruction Set Manual vol. II (Privileged Architecture), section 2.3.

2.1. Machine Control Transfer Record Control
(mctrcontrol)
The mctrcontrol register is an MXLEN-bit read/write WARL register that enables and configures the
CTR capability while V=0.

MXLEN-1:48 47 46

0 DIROJMPINH INDOJMPINH

45 44 43 42 41 40

RETINH CORSWAPINH DIRJUMPINH INDJUMPINH DIRCALLINH INDCALLINH

39 38 37 36 35 34 33 32:20

0 ETEN TKBRINH NTBREN TRETINH INTRINH EXCINH 0

19:16 15:13 12 11 10 9 8

DEPTH 0 LCOFIFRZ BPFRZ RASEMU STE MTE

7 6:3 2 1 0

CLR 0 U S M

Field Description

M, S, U Enable transfer recording in the selected privileged mode(s). VS and VU modes
can be enabled from vsctrcontrol.

CLR When written to 1, zeroes all implemented CTR entries, regardless of the
current CTR depth. Also zeroes mctrstatus. Reads will always return 0 for this
bit.

MTE If ETEN=1, enables recording of traps to M-mode when M=0. See External
Traps.

STE If ETEN=1, enables recording of traps to S-mode when S=0. See External Traps.

RASEMU Enables RAS Emulation Mode.

5

https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/

Field Description

BPFRZ Set mctrstatus.FROZEN on a breakpoint exception. See Freeze.

LCOFIFRZ Set mctrstatus.FROZEN on local counter overflow interrupt (LCOFI). See
Freeze.

DEPTH[3:0] Selects the depth of the CTR array. Encodings:

‘0000 - 16

‘0001 - 32

‘0011 - 64

‘0111 - 128

‘1111 - 256

The depth of the CTR array dictates the number of entries to which the
hardware will record transfers. For a depth of N, the hardware will record
transfers to entries 0..N-1. mireg, mireg2, and mireg3 are read-only 0 when
miselect holds a value in N..255.

Which DEPTH values are supported is implementation-specific, though
supported values must be consecutive. An implementation may opt to
hardcode some or all of the bits in this field, based on the depth options
supported. See Discovery.

EXCINH Inhibit recording of exceptions. See Transfer Type Filtering.

INTRINH Inhibit recording of interrupts. See Transfer Type Filtering.

TRETINH Inhibit recording of trap return instructions. See Transfer Type Filtering.

NTBREN Enable recording of not-taken branch instructions. See Transfer Type Filtering.

TKBRINH Inhibit recording of taken branch instructions. See Transfer Type Filtering.

ETEN Enable recording of external traps, or traps from an enabled mode to a
disabled mode. If ETEN=MTE=1, external traps to M-mode will be recorded. If
ETEN=STE=1, external traps to S-mode will be recorded. See External Traps.

INDCALLINH Inhibit recording of indirect call instructions. See Transfer Type Filtering.

DIRCALLINH Inhibit recording of direct call instructions. See Transfer Type Filtering.

INDJUMPINH Inhibit recording of indirect jump instructions. See Transfer Type Filtering.

DIRJUMPINH Inhibit recording of direct jump instructions. See Transfer Type Filtering.

CORSWAPINH Inhibit recording of co-routine swap instructions. See Transfer Type Filtering.

RETINH Inhibit recording of function return instructions. See Transfer Type Filtering.

INDOJMPINH Inhibit recording of other indirect jump instructions. See Transfer Type
Filtering.

6

Field Description

DIROJMPINH Inhibit recording of other direct jump instructions. See Transfer Type
Filtering.

M, CLR, and DEPTH are required fields. S is required if S-mode is implemented, and U is required if
U-mode is implemented. All other fields are optional.

When reducing CTR depth, by writing ctrcontrol.DEPTH to a smaller value, software
should set ctrcontrol.CLR. This ensures that no transfer state is retained in the now-
inaccessible entries above the new depth value.

All unimplemented fields are read-only 0. Bits 63:60 are reserved for custom extensions.

In RV32, mctrcontrol[63:32] can be accessed via mctrcontrolh.

2.2. Supervisor Control Transfer Record Control
(sctrcontrol)
The sctrcontrol register provides access to a subset of ctrcontrol. It is accessible from S-mode and
VS-mode, such that S-mode accesses are redirected to mctrcontrol and VS-mode accesses are
redirected to vsctrcontrol.

Bits 0 and 8 in sctrcontrol are read-only 0. As a result, S-mode and VS-mode do not have access to
the M and MTE fields in mctrcontrol. All other ctrcontrol fields are accessible through sctrcontrol.

In RV32, sctrcontrol[63:32] can be accessed via sctrcontrolh.

If S-mode is not implemented, access to sctrcontrol(h) results in an illegal instruction exception.

2.3. Virtual Supervisor Control Transfer Record
Control (vsctrcontrol)
The vsctrcontrol register is a VSXLEN-bit read/write WARL register that enables and configures the
CTR capability while V=1. VS-mode accesses to sctrcontrol are redirected to vsctrcontrol.

VSXLEN-1:48 47 46

0 DIROJMPINH INDOJMPINH

45 44 43 42 41 40

RETINH CORSWAPINH DIRJUMPINH INDJUMPINH DIRCALLINH INDCALLINH

39 38 37 36 35 34 33 32:20

0 ETEN TKBRINH NTBREN TRETINH INTRINH EXCINH 0

7

19:16 15:13 12 11 10 9 8

DEPTH 0 LCOFIFRZ BPFRZ RASEMU VSTE 0

7 6:3 2 1 0

CLR 0 VU VS 0

Field Description

VS, VU Enable transfer recording in the selected privileged mode(s).

VSTE If ETEN=1, enables recording of traps to VS-mode when VS=0. See External
Traps.

DEPTH Provides read-only access to the mctrcontrol.DEPTH field

Other field definitions match those of mctrcontrol. The optional fields implemented in vsctrcontrol
should match those implemented in mctrcontrol.

Bit positions for VSTE, VS, and VU in vsctrcontrol match those for STE, S, and U in
sctrcontrol, respectively. This is to accommodate an (unenlightened) guest OS that is
unaware it is running with V=1.

vsctrcontrol.DEPTH is a read-only copy of mctrcontrol.DEPTH in order to allow a
hypervisor to dictate the depth used by a VM. This simplifies VM migration, by
providing the hypervisor a means to require the guest to use a depth supported
across all systems in the datacenter.

Because vsctrcontrol is active only when V=1, writing a 1 to vsctrcontrol.CLR will
affect a clear only when V=1.

In RV32, vsctrcontrol[63:32] can be accessed via vsctrcontrolh.

If the H extension is not implemented, access to vsctrcontrol(h) results in an illegal instruction
exception.

The TG considered making vsctrcontrol pass-through mctrcontrol fields other than
VS, VU, and VSTE. This would simplify behavior on traps and trap returns between
V=0 and V=1, since those shared CTR configuration fields would not change. But this
would be undesirable for host + guest usages, since it would require switching
sctrcontrol on each V transition.

2.4. Machine Control Transfer Record Status
(mctrstatus)
The mctrstatus register provides access to CTR status information, and is updated by the hardware
when CTR is active (in an enabled privilege mode and not frozen).

8

31:16 15 14 13:8 7:0

WPRI FROZEN WRAP WPRI WRPTR

Field Description Access

WRPTR Indicates the physical CTR array entry to be written next. Incremented on
new transfers recorded, and decremented on qualified returns when
ctrcontrol.RASEMU=1. Wraps on increment when the value matches the
selected depth-1, and on decrement when the value is 0. Bits above those
needed to represent depth-1 (e.g., bits 7:4 for depth=16) are read-only 0.

WARL

WRAP Sticky indication that the WRPTR has wrapped. Set when WRPTR has
value depth-1 (where depth is based on ctrcontrol.DEPTH), and a CTR
update causes WRPTR to be incremented. Cleared when WRPTR has
value zero and a CTR update causes WRPTR to be decremented (which
only happens on returns when RASEMU=1), and on CSR writes that set
ctrcontrol.CLR.

WARL

FROZEN Inhibit transfer recording. See Freeze. WARL

Bits 31:28 are reserved for custom extensions.

Logical entry 0, accessed via mireg* when miselect=0x200, is always the physical
entry preceding the WRPTR entry (WRPTR-1 % depth).

Because the mctrstatus register is updated by hardware, writes should be performed
with caution. If a multi-instruction read-modify-write to mctrstatus is performed
while CTR is active, such that a qualified transfer, or trap that causes CTR freeze,
completes between the read and the write, a hardware update could be lost.

Exposing the WRPTR provides a more efficient means for synthesizng CTR entries. If
a qualified control transfer is emulated, the emulator can simply increment the
WRPTR, then write the synthesized record to entry 0. If a qualified function return is
emulated while RASEMU=1, the emulator can clear ctrsource.V for entry 0, then
decrement the WRPTR.

Exposing the WRPTR may also allow support for Linux perf’s stack stitching
capability.

2.5. Supervisor Control Transfer Record Status
(sctrstatus)
The sctrstatus register is an S-mode and VS-mode (writable) alias to mctrstatus.

2.6. CSR Listing

9

https://lwn.net/Articles/802821
robert.chyla
Comment on Text
Is it required for implementation to allow write of CTR entries? How tool (or user?) may know it is allowed?

beeman
beeman
Well, we have to allow writes to CTR entries in order to support save/restore of CTR state, e.g. on context switch. Synthesizing of entries should be less common, but is needed when privileged software (e.g., a hypervisor) emulates a control flow transfer operation.

CSR
Number

Name Description

0x181 sctrcontrol Supervisor Control Transfer Records Control Register

0x182 sctrcontrolh* Supervisor Control Transfer Records Control Register upper 32 bits

0x183 sctrstatus Supervisor Control Transfer Records Status Register

0x281 vsctrcontrol Virtual Supervisor Control Transfer Records Control Register

0x282 vsctrcontrolh* Virtual Supervisor Control Transfer Records Control Register upper
32 bits

0x381 mctrcontrol Machine Control Transfer Records Control Register

0x382 mctrcontrolh* Machine Control Transfer Records Control Register upper 32 bits

0x383 mctrstatus Machine Control Transfer Records Status Register

* For RV32 only

10

Chapter 3. Entry Registers
Control transfer records are stored in a CTR array, such that each array entry stores metadata for a
single transfer. The CTR array entries are logically accessed via the indirect register access
mechanism defined by the Smcsrind/Sscsrind extension. The miselect index range 0x200..0x2FF is
reserved for CTR entries 0..255. When miselect holds a value in this range, mireg provides access to
ctrsource, mireg2 provides access to ctrtarget, mireg3 provides access to ctrdata, and mireg[456]
are read-only zero.

The standard indirect register access rules specified by Smcsrind/Sscsrind apply for CTR. S-mode is
able to access CTR entries using the siselect/sireg* interface, with the same behavior described for
M-mode above. Similarly, VS-mode is able to access CTR entries using siselect (really vsiselect) and
sireg* (really vsireg*). See State Enable Access Control for cases where CTR access from S-mode and
VS-mode may be restricted.

For *iselect values in 0x200..0x2FF, vsireg* registers access the same entry register state as mireg*
and sireg*, regardless of the privilege mode at the time of access. There is not a separate set of entry
registers for V=1.

Undefined bits in CTR entry registers are WPRI. Status fields may be added by future extensions,
and software should ignore but preserve any fields that it does not recognize.

Implementations may opt not to preserve CTR entry state across clock-gated low-
power states. A bit to indicate this should be added to the ACPI spec upon
ratification.

3.1. Control Transfer Record Source (ctrsource)
The ctrsource register contains the source virtual address (PC) of the recorded transfer. The valid
(V) bit is set by the hardware when a transfer is recorded in the selected CTR array entry, and
implies that data in ctrsource, ctrtarget, and ctrdata is valid for this entry. All fields are required.

ctrsource is an MXLEN-bit WARL register that must be able to hold all valid virtual addresses. It
need not be able to hold an invalid address. When XLEN < MXLEN, software access via *ireg will
access only the lower XLEN bits of ctrsource, and implict writes (by recorded transfers) will be
zero-extended.

MXLEN-1:XLEN XLEN-1:1 0

0 PC[XLEN-1:1] V

CTR entry registers are defined as MXLEN, despite the CSRs used to access them
(*ireg*) being XLEN, to ensure that entries recorded in RV64 are not truncated, as a
result of CSR Width Modulation, on a transition to RV32.

A transfer from an invalid address (which could only occur on an exception) may
report a valid address in ctrsource.PC.

11

https://docs.google.com/document/u/0/d/1ZxTSUWX_9_VafWeA0l1ci9RFjmivLuZn-US9IbFOEWY/edit
https://github.com/riscv-non-isa/riscv-acpi-ffh/pull/3/files
robert.chyla
Comment on Text
Misleading - I was thinking we have so many 'mireg'.

robert.chyla
Comment on Text
Only below 'siselect (really vsiselect)' are mentioned. I would describe this in more 'abstract' terms.

robert.chyla
Comment on Text
Each entry stores more than metadata. Metadata is 3-rd word only.

robert.chyla
Comment on Text
Do we ever allow writing these?

robert.chyla
Comment on Text
Some implementations may have more data there. I would say these are 'undefined' (but should not abort).

robert.chyla
Comment on Text
What is abort handling?

robert.chyla
Comment on Text
I think we discussed 0 (0-s are shown below).

robert.chyla
Comment on Text
This is not single register. IMO this CSR (mireg ...) is really a 'window' into array entry.

robert.chyla
Comment on Text
Not all implementations may report miss-predict ...

robert.chyla
Comment on Text
Do we allow writes to it?

robert.chyla
Comment on Text
Do we allow 'explicit writes'?

robert.chyla
Comment on Text
This may be a security hole. Most likely some bits may be 'fixed' (according to Sv mode). Also LSB=1 is invalid (for now ...).

robert.chyla
Comment on Text
I am not sure if we need to make this complication. It is unlikely RV32 and RV64 modes will be implemented in same SoC. On Windows (and ARM ...) it was allowed due to natural progression (need to run a lot of old 32-bit SW on new 64-bit HW ...), but on RISC-V it will rather not happen. It will be less mind-twisting

beeman
beeman
Changed to say "information about" a single transfer

beeman
beeman
Yes, explained in my earlier comment response

beeman
beeman
"siselect (really vsiselect)" uses the same language as S*csrind and other specs for describing how vs* CSRs substitute for s* CSRs when V=1

beeman
beeman
Expanded it

beeman
beeman
these are not designated for custom use, they are reserved for standard use. We could consider designating some (mireg6?) for custom use, but remember that we can't ever get it back for standard use in that case. An implementation might be better off creating a custom ireg to hold custom CTR record fields.

beeman
beeman
See the S*csrind spec for any cases that aren't listed here

beeman
beeman
Software may observe non-zero values in these bits, if it runs on newer hardware that implements future CTR extensions. So it should ignore but preserve them, which is what WPRI is for.

beeman
beeman
mireg is an alias that accesses underlying registers. ctrsource is the underlying register, when miselect is in the CTR range.

beeman
beeman
Mispredict is not in this register.

beeman
beeman
yes

beeman
beeman
This was added in response to prior feedback to make sure this was clear

beeman
beeman
yes

beeman
beeman
The point of this is that we do not require implementations to support extra bits of storage in ctrsource just to make sure we can record an illegal address (which could be the source PC of an exception trap). So if only Sv48 is supported and we jump to 0x1234ffffffff1000, we'll just report 0xffffffff1000.

If we believe a future standard or custom extension may define 1-byte opcodes, then
we should not use bit 0 of ctrsource for the V field, nor bit 0 of ctrtarget for MISP. The
V bit could be moved to ctrdata, but that would mean software would always need to
read ctrdata.

3.2. Control Transfer Record Target (ctrtarget)
The ctrtarget register contains the target (destination) virtual address of the recorded transfer.
MISP is optional, it is set by the hardware when the recorded transfer is an instruction whose target
or taken/not-taken direction was mispredicted by the branch predictor. MISP is read-only 0 when
not implemented.

ctrtarget is an MXLEN-bit WARL register that must be able to hold all valid virtual addresses. It
need not be capable of holding an invalid address. When XLEN < MXLEN, software access via *ireg2
will access only the lower XLEN bits of ctrtarget, and implict writes (by recorded transfers) will be
zero-extended.

MXLEN-1:XLEN XLEN-1:1 0

0 PC[XLEN-1:1] MISP

 A transfer to an invalid address may report a valid address in ctrtarget.PC.

3.3. Control Transfer Record Metadata (ctrdata)
The ctrdata register contains metadata for the recorded transfer. This register is required, though
all fields within it are optional. Unimplemented fields are read-only 0.

ctrdata is an MXLEN-bit register. When XLEN < MXLEN, software access via *ireg3 will access only
the lower XLEN bits of ctrdata.

MXLEN-1:32 31:16 15 14:4 3:0

WPRI CC CCV WPRI TYPE

12

robert.chyla
Comment on Text
This may be a security hole. What it means exactly? Return to even number will report LSB=0?

robert.chyla
Comment on Text
I am not sure if there is enough room in encodings. Bigger instructions are always N816. CTR should be compatible with some of RVA-profiles, which cannot gave-up many instructions.IMO we should not discuss this. E-Trace and N-Trace formats do not report LSB PC bit as this is assumed 'always 0'.

robert.chyla
Comment on Text
How a tool may know it? It may report all correctly predicted ...

beeman
beeman
Yeah, I think it's highly unlikely as well. But one person argued that a custom extension might do it. I added it as a warning block just to let reviewers consider the possibility, but unless someone from ARC says we need to worry about it I'm assuming I'll delete this and change nothing before we freeze.

beeman
beeman
See the Discovery chapter at the end.

beeman
beeman
See my comment above about invalid addresses. I don't see any security hole here, it just means we may drop some bad upper address bits

Field Description Access

TYPE[3:0] Identifies the type of the control flow transfer recorded in the entry.
Implementations that do not support this field will report 0.

0000 - Reserved

0001 - Exception

0010 - Interrupt

0011 - Trap return

0100 - Not-taken branch

0101 - Taken branch

0110 - Reserved

0111 - Reserved

1000 - Indirect call

1001 - Direct call

1010 - Indirect jump

1011 - Direct jump

1100 - Co-routine swap

1101 - Return

1110 - Other indirect jump

1111 - Other direct jump

WARL

CCV Cycle Count Valid. See Cycle Counting. WARL

CC[15:0] Cycle Count, composed of the Cycle Count Exponent (CCE, in CC[15:12])
and Cycle Count Mantissa (CCM, in CC[11:0]). See Cycle Counting.

WARL

Bits 14:12 are reserved for custom extensions.

The TG has debated the merits of including a 3-bit privilege mode field in ctrdata.
This would help in cases where multiple privilege modes are recorded, and existing
mechanisms for discerning the mode (addressing conventions and kernel mmaps) do
not apply or are not available. But it would require some complexity to avoid
exposing the presence of virtualization to a VM that is using CTR, and there is
question about the value given that existing tools that use similar capabilities from
other architectures do not require this information. The TG has thus far opted not to
standardize bits for privilege mode, but consensus within the TG has not been
reached.

13

robert.chyla
Comment on Text
For me PRIV is natural extension of PC. As CTR may be used by different OS-es/RTOS-es, it may be hard to assure address itself defines privilege mode. We have a lot of 'free' bits. Also PRIV must be know to CTR (as mode-filtering ...), so it should not be big cost to report it.

robert.chyla
Comment on Text
This is rather 'unknown' or 'not supported' instead 'reserved'

robert.chyla
Comment on Text
This should be visible in layout of register.

beeman
beeman
No, it's reserved for future standard use.

beeman
beeman
That's not the way it's done in the priv spec. See mip/mie.

beeman
beeman
I included this so that reviewers could consider it. So far nobody has asked for it. I asked MarkusG from Lauterbach about it, and he agreed that CTR is not very useful for debug and he would not spend resources on it.

Like the Transfer Type Filtering bits in ctrcontrol, the ctrdata.TYPE bits leverage the
E-trace itype encodings.

14

Chapter 4. State Enable Access Control
When Smstateen is implemented, the mstateen0.CTR bit controls access to CTR register state from
privilege modes less privileged than M-mode. When mstateen0.CTR=0, attempts from privilege
modes less privileged than M-mode to access sctrcontrol, vsctrcontrol, sctrstatus, sireg* when
siselect is in 0x200..0x2FF, or vsireg* when vsiselect is in 0x200..0x2FF, raise an illegal instruction
exception. When mstateen0.CTR=1, accesses to CTR register state behave as described in CSRs and
Entry Registers above.

When mstateen0.CTR=0, qualified control transfers executed in privilege modes less privileged than
M-mode will continue to implicitly update Entry Registers and mctrstatus.

If the H extension is implemented and mstateen0.CTR=1, the hstateen0.CTR bit controls access to
supervisor CTR state (sctrcontrol, sctrstatus, and sireg* when siselect is in 0x200..0x2FF) when V=1.
When mstateen0.CTR=1 and hstateen0.CTR=1, VS-mode accesses to supervisor CTR state behave as
described in CSRs and Entry Registers above. When mstateen0.CTR=1 and hstateen0.CTR=0, VS-
mode accesses to supervisor CTR state that would have completed successfully if hstateen0.CTR was
set raise a virtual instruction exception, while others raise an illegal instruction exception.

When hstateen0.CTR=0, qualified control transfers executed while V=1 will continue to implicitly
update Entry Registers and mctrstatus.

The CTR bit is bit 55 in mstateen0 and hstateen0.

Bit 60 in mstateen0, defined by Smcsrind, can also restricts access to sireg*/siselect and
vsireg*/vsiselect from privilege modes less privileged than M-mode.

15

robert.chyla
Comment on Text
Is this mandated by m/scsrind extension or this is CTR specific?

robert.chyla
Comment on Text
This is mentioned here for first time. Relation to other CSRs (outide of CTR ...) should be cleaner.

robert.chyla
Comment on Text
Is this defined just here? Or this is part of 'mstateen' extension.

beeman
beeman
This is following the approach of AIA, see section 2.5 in that spec. First the CSRs are defined, then the Smstateen access control is specified.

beeman
beeman
This is the way that Smstateen blocks access to state. The idea is to give privileged code the ability to make it appear to less privileged code that the feature is not implemented. i.e., in case the more privileged code is unaware of the feature and won't context switch it.

beeman
beeman
This is defined here.

Chapter 5. Behavior
CTR records qualified control transfers. Control transfers are qualified if they meet the following
criteria:

• The current privilege mode is enabled

• The transfer type is not inhibited

• mctrstatus.FROZEN is not set

Such qualified transfers update the Entry Registers at logical entry 0, such that older entries are
pushed down the stack (the record previously in entry 0 is pushed to entry 1, the record previously
in entry 1 is pushed to entry 2, etc). If the CTR array is full, the oldest recorded entry (at depth-1) is
overwritten.

Recorded transfers will set the ctrsource.V bit to 1, and will update all implemented record fields.

In order to collect accurate and representative performance profiles while using CTR,
it is recommended that hardware recording of control transfers incurs no added
performance overhead, e.g., in the form of retirement or instruction execution
restrictions that are not present when CTR is not recording transfers.

5.1. Privilege Mode Transitions
Transfers that change the privilege mode are a special case. What is recorded, if anything, depends
on whether the source mode and/or target mode are enabled for recording, and on the transfer
type (trap or trap return).

Traps and trap returns between enabled modes are recorded as normal. Traps from a disabled
mode to an enabled mode, and trap returns from an enabled mode back to a disabled mode, are
partially recorded. In such cases, the PC from the disabled mode (source PC for traps, and target PC
for trap returns) is 0. Trap returns from a disabled mode to an enabled mode are not recorded.
Traps from an enabled mode to an disabled mode, known as external traps, are not recorded by
default, but see External Traps for how they can be recorded.

Debug Mode is always inhibited. Transfers into and out of Debug Mode are never recorded.

5.2. Transfer Type Filtering
By default, all control transfers within enabled privileged modes are recorded. Bits 47:32 in
ctrcontrol provide a means for software to alter this behavior, by opting out of select transfer types,
or opting into non-default types. An implementation may opt to support any combination of
transfer type filter bits, or none.

16

robert.chyla
Comment on Text
All entries are overwritten - oldest one is lost.

robert.chyla
Comment on Text
IMO it should be mandated and not recommended. IMO it would be better to 'drop a record' (mark as an error ...) instead stalling execution. Trace is able to observe execution profile without a need to stall. Records are dropped ONLY because of saturation of output buffers and NOT because internal data cannot be generated.

beeman
beeman
changed to lost

beeman
beeman
I don't think we should mandate that. It is very expensive to scale CTR updates with the number of transfers that can retire per cycle, for high-performance CPUs. Requires a new write port to the buffer for each one. Intel has implementations which do slow down when LBR is enabled, and while that is undesirable customers still use it. Better a slow LBR than no LBR.

Because External Traps and Not-taken Branches are not recorded by default, the
polarity of the associated enable bits (ETEN and NTBREN) is the opposite of other
bits associated with transfer type filtering (TKBRINH, RETINH, etc). Non-default
operations require opt-in rather than opt-out. This ensures that default behavior is
enabled when transfer type filter bits are set to 0, or are not implemented.

The transfer type filter bits leverage the type definitions specified in Table 4.4, and described in
Section 4.1.1, of the RISC-V Efficient Trace Spec v2.0. An exception is the ETEN bit, discussed in
External Traps below.

For a given implementation, if support for any transfer type filter bit results in
reduced software performance, perhaps due to additional retirement restrictions, it
is strongly recommended that this reduced performance apply only when the bit is
set. Alternatively, support for the bit may be omitted. Maintaining software
performance for the default CTR configuration, when all transfer type bits are
cleared, is paramount.

5.2.1. External Traps

By default external traps are not recorded, but an optional handshake mechanism exists to allow
partial recording. Software running in the target mode of the trap can opt-in to allowing CTR to
record traps into that mode even when the mode is inhibited. The MTE, STE, and VSTE bits allow M-
mode, S-mode, and VS-mode, respectively, to opt-in. Tools can request to record External Traps by
setting the ETEN bit. When an External Trap occurs, only if both ETEN=1 and xTE=1, such that x is
the target privilege mode of the trap, will CTR record the trap. In such cases, the target PC is 0.

The external trap handshake allows both system software and the tools control over
what is exposed. M-mode firmware may always set mctrcontrol.MTE=1, but a user-
mode profiler may not wish to see any traps. The driver can set sctrcontrol.ETEN=0
to ensure that external traps are not recorded. On the other hand, a VM may wish to
record external traps from VU-mode to VS-mode, but the hypervisor may not wish to
expose traps from VU/VS-mode to HS-mode. The VM will set ETEN=VSTE=1, but the
hypervisor can clear sctrcontrol.STE.

No such mechanism exists for recording external trap returns, because the external
trap record includes all relevant information, and gives the trap handler (e.g., an
emulator) the opportunity to modify the record.

Note that external trap recording does not depend on EXCINH/INTRINH, only on
ETEN and MTE/STE. Thus, when external traps are enabled, both external interrupts
and external exceptions are recorded.

STE allows recording of traps from U-mode to S-mode as well as from VS/VU-mode to
HS-mode. The hypervisor can flip STE before entering a guest if it wants different
behavior for U-to-S vs VS/VU-to-HS. A separate HTE bit could be defined, but ideally it
would live in an hctrcontrol CSR, which is otherwise unneeded. We could put it in
[ms]ctrcontrol, but the bit position would need special treatment in vsctrcontrol

17

https://github.com/riscv-non-isa/riscv-trace-spec/releases/download/v2.0rc2/riscv-trace-spec.pdf
robert.chyla
Comment on Text
I do not think we should allow this.

robert.chyla
Comment on Text
i would explain what 'external trap' really means. I know it (as I was part of TG ...), but it is not clear. It is a trap from enabled mode to disabled mode.Maybe 'Partially Recorded Traps' would be better term than 'External Traps'?

beeman
beeman
See above. I don't think we can mandate performance impacts anyway.

beeman
beeman
Good catch, added

(writable but has no impact on behavior).

The table below provides details on recording of privilege mode transfers. Standard dependencies
on FROZEN and transfer type inhibits also apply, but are not covered by the table.

Transfer Type Source Mode Target Mode

Enabled Inhibited

Trap Enabled Recorded. Recorded if ETEN=xTE=1, where
x is target mode. Target PC is 0,
type is External Trap.

Inhibited Recorded, Source PC is 0. Not recorded.

Trap Return Enabled Recorded. Recorded, Target PC is 0.

Inhibited Not recorded. Not recorded.

If ETEN is implemented, MTE must be implemented as well, as must STE if S-mode is implemented,
and VSTE if VS-mode is implemented.

5.3. Cycle Counting
The ctrdata register may optionally include a count of CPU cycles elapsed since the prior CTR
record. The elapsed cycle count value is represented by the CC field, which has a mantissa
component (Cycle Count Mantissa, or CCM) and an exponent component (Cycle Count Exponent, or
CCE). The elapsed cycle count can be calculated using the following formula:

if (CCE==0):
 return CCM
else:
 return (212 + CCM) << CCE-1
endif

When CCE>1, the granularity of the reported cycle count is reduced. For example,
when CCE=3, the bottom 2 bits of the cycle counter are not reported, and thus the
reported value increments only every 4 cycles. As a result, the reported value
represents an undercount of elapsed cycles for most cases (when the unreported bits
are non-zero). On average, the undercount will be (2CCE-1-1)/2. Software can reduce the
average undercount to 0 by adding (2CCE-1-1)/2 to each computed cycle count value
when CCE>1.

The CC value is only valid when the Cycle Count Valid (CCV) bit is set. If CCV=0, the CC value may not
hold the correct count of elapsed qualified cycles since the last recorded transfer. Qualified cycles
are those executed within an enabled privilege mode with FROZEN=0. An implementation must
clear CCV for the next recorded transfer upon a write to ctrcontrol, and in any other
implementation-specific scenarios where qualified cycles may be not be counted.

An implementation that supports cycle counting must support CCV and all CCM bits, but may

18

robert.chyla
Comment on Text
We use term 'disabled' in other places (in text). It should be consistent.

robert.chyla
Comment on Text
IMO we discussed this in TG and I think it should be better explained in the spec what 'may not' means. For example when trap happened (into disabled mode) CC will not be accurate. IMO if CV=1, CC must be accurate.

beeman
beeman
Fixed

beeman
beeman
Yes, I changed this based on what we discussed in the TG. Software should make no assumptions about CC if CCV=0.

support 0..4 exponent bits in CCE. Unimplemented CCE bits are read-only 0. For implementations
that support transfer type filtering, it is recommended to support at least 3 exponent bits. This
allows capturing the full latency of most functions, when recording only calls and returns.

The CC value saturates when all implemented bits in CCM and CCE are 1.

5.4. RAS Emulation Mode
When ctrcontrol.RASEMU=1, transfer recording behavior is altered to emulate the behavior of a
return-address stack (RAS).

• Indirect and direct calls are recorded as normal

• Function returns pop the most recent call, by invalidating entry 0 (setting ctrsource.V=0) and
rotating the CTR array, such that (invalidated) entry 0 moves to entry depth-1, and entries
1..depth-1 move to 0..depth-2.

• Co-routine swaps affect both a return and a call. Entry 0 is overwritten.

• Other transfer types are inhibited

• Transfer Type Filtering bits are ignored

Profiling tools often collect call stacks along with each sample. Stack walking,
however, is a complex and often slow process that may require recompilation (e.g.,
-fno-omit-frame-pointer) to work reliably. With RAS emulation, tools can ask CTR
hardware to save call stacks even for unmodified code.

CTR RAS emulation has limitations. The CTR array will contain only partial stacks in
cases where the call stack depth was greater than the CTR depth, CTR recording was
enabled at a lower point in the call stack than main(), or where the CTR array was
cleared since main().

The CTR stack may be corrupted in cases where calls and returns are not symmetric,
such as with stack unwinding (e.g., setjmp/longjmp, C++ exceptions), where stale call
entries may be left on the CTR stack, or user stack switching, where calls from
multiple stacks may be intermixed.

As described in Cycle Counting, when CCV=1, the CC field provides the elapsed cycles
since the prior CTR entry was recorded. This introduces implementation challenges
when RASEMU=1 because, for each recorded call, there may have been several
recorded calls (and returns which “popped” them) since the prior remaining call
entry was recorded. The implication is that returns that pop a call entry not only do
not reset the cycle counter, but instead add the CC field from the popped entry to the
counter. For simplicity, an implementation may opt to record CCV=0 for all calls, or
those whose parent call was popped, when RASEMU=1.

5.5. Freeze
When mctrstatus.FROZEN=1, transfer recording is inhibited. This bit can be set by hardware, as

19

robert.chyla
Comment on Text
It should be clearly stated it is optional feature.

robert.chyla
Comment on Text

beeman
beeman
Added

described below, or by software.

When ctrcontrol.LCOFIFRZ=1 and a local counter overflow interrupt (LCOFI) traps,
mctrstatus.FROZEN is set by the CPU. This inhibits CTR recording until software clears FROZEN. The
LCOFI trap itself is not recorded.

Freeze on LCOFI ensures that the execution path leading to the sampled instruction
(xepc) is preserved, and that the local counter overflow interrupt (LCOFI) and
associated Interrupt Service Routine (ISR) do not displace any recorded transfer
history state. It is the responsibility of the ISR to clear FROZEN before xRET, if
continued control transfer recording is desired.

LCOFI refers only to architectural traps directly caused by a local counter overflow.
If a local counter overflow interrupt is recognized without a trap, for instance by
reading mip, FROZEN is not automatically set.

Similarly, on a breakpoint exception with ctrcontrol.BPFRZ=1, FROZEN is set by the CPU. The
breakpoint exception itself is not recorded.

Breakpoint exception refers to synchronous exceptions with a cause value of
Breakpoint (3), regardless of source (ebreak, c.ebreak, Sdtrig); it does not include
entry into Debug Mode, even in cores where this is implemented as an exception.

20

Chapter 6. Discovery
Software can discover supported CTR array depth values using the following method:

• Write ‘0000 to ctrcontrol.DEPTH, then read back the value. The value read represents the
minimum supported depth.

• Write ‘1111 to ctrcontrol.DEPTH, then read back the value. The value read represents the
maximum supported depth.

All depths between the minimum and maximum are supported.

Software can discover implemented optional ctrcontrol fields by writing all 1s to all defined fields,
then reading the value back. Unimplemented fields are read-only 0.

Software can discover implemented optional CTR entry fields by writing all 1s to all defined fields
in the Entry Registers at entry 0, then reading them back. Unimplemented fields are read-only 0.

21

robert.chyla
Comment on Text
We never mentioned writing to CTR records. Providing two write paths is most likely complicated. Maybe we should have WARL bits in control to encode what is supported, that is not. Only CCV may be detectable. IMO adding WARL bit to enable 'CC' and 'CCV' (which can be fixed0=not supported, or fixed1=always enabled or variable=configurable).

beeman
beeman
As stated above, we have to support writing to records, for many reasons

	RISC-V Control Transfer Records (Smctr/Ssctr)
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Chapter 1. Introduction
	Chapter 2. CSRs
	2.1. Machine Control Transfer Record Control (mctrcontrol)
	2.2. Supervisor Control Transfer Record Control (sctrcontrol)
	2.3. Virtual Supervisor Control Transfer Record Control (vsctrcontrol)
	2.4. Machine Control Transfer Record Status (mctrstatus)
	2.5. Supervisor Control Transfer Record Status (sctrstatus)
	2.6. CSR Listing

	Chapter 3. Entry Registers
	3.1. Control Transfer Record Source (ctrsource)
	3.2. Control Transfer Record Target (ctrtarget)
	3.3. Control Transfer Record Metadata (ctrdata)

	Chapter 4. State Enable Access Control
	Chapter 5. Behavior
	5.1. Privilege Mode Transitions
	5.2. Transfer Type Filtering
	5.2.1. External Traps

	5.3. Cycle Counting
	5.4. RAS Emulation Mode
	5.5. Freeze

	Chapter 6. Discovery

